MTH 291 - Differential Equations
Northern Virginia Community College
Extended Learning Institute
Dr. Goral
Section 4.8 page 172:2 (Differential Equations with Boundary Value Problems, 7 ed, Zill & Cullen)

Solve the given system of differential equations by systematic elimination.

\[
\frac{dx}{dt} = 4x + 7y \\
\frac{dy}{dt} = x - 2y
\]

The solution will be of the form \(x(t), y(t) \)
First, let’s change to operator notation.
Note: \(D = \frac{d}{dt} \)
\[Dx = 4x + 7y\]
\[Dy = x - 2y\]
\Rightarrow (D - 4)x - 7y = 0
\[-x + (D + 2)y = 0\]

To eliminate \(x \), we operate on the second equation by \((D - 4) \).
\[(D - 4)x - 7y = 0\]
\[(D - 4)(-x) + (D - 4)(D + 2)y = (D - 4)0\]

Add the two equations.
\[-7y + (D - 4)(D + 2)y = 0\]
\[(D^2 - 4D + 2D - 8 - 7)y = 0\]
\[(D^2 - 2D - 15)y = 0\]
The auxiliary equation is
\[m^2 - 2m - 15 = 0\]
\[(m + 3)(m - 5) = 0\]
\[m = -3, 5\]
\[y(t) = c_1 e^{-3t} + c_2 e^{5t}\]
Now, we can use substitution.
\[\frac{dy}{dt} = x - 2y \Rightarrow x = \frac{dy}{dt} + 2y\]
\[x = \frac{d(c_1 e^{-3t} + c_2 e^{5t})}{dt} + 2(c_1 e^{-3t} + c_2 e^{5t}) \]
\[x = (-3c_1 e^{-3t} + 5c_2 e^{5t}) + 2(c_1 e^{-3t} + c_2 e^{5t}) \]
\[x = (-3c_1 + 2c_1) e^{-3t} + (5c_2 + 2c_2) e^{5t} \]
\[x(t) = -c_1 e^{-3t} + 7c_2 e^{5t} \]
\[y(t) = c_1 e^{-3t} + c_2 e^{5t} \]

Let's have SN check our solution.

\[\frac{dx}{dt} = 4x + 7y \]
\[\frac{dy}{dt} = x - 2y \]

, Exact solution is: \(\{ y(t) = \frac{1}{7} C_5 e^{5t} - C_4 e^{-3t}, x(t) = C_4 e^{-3t} + C_5 e^{5t} \} \)

Let \(C_4 = -c_1 \)

Let \(C_5 = 7c_2 \)

Then, \(c_1 = -C_4 \) and \(c_2 = \frac{C_5}{7} \)

Thus, the solutions are equivalent.